WideString Properties

by Ray Lischner

ast month you read all about

wide strings and Unicode, so
now you are ready to use wide
string properties on your custom
components. Oops. Delphi’s IDE
does not support published prop-
erties of WideString type. Strictly
speaking, the IDE supports Wide-
String, but it does so by mapping
all wide characters to ANSI charac-
ters. If you wanted to use ANSI
characters, you would have used a
plain ANSI string, right? This article
explains what is wrong with the IDE
and how to work around its limita-
tions so your custom components
can publish properties of type
WideString. It’s harder than it
should be, and some of the code
gets into Delphi internals. Do not
read this article without proper
supervision. You've been warned.

Unicode And WideString
If you missed last month’s article
on wide strings, here’s a brief sum-
mary of wide strings in Delphi.
Windows NT and Windows 2000
support diverse languages and
character sets using Unicode, a
16-bit character set that unifies
Asian, Arabic, European and other
character sets in a single character
set. The character set standard is
maintained by ISO and the Unicode
Consortium (www.unicode.org).
Delphi supports Unicode with its
WideChar and WideString types.
WideChar is a 2-byte character that
stores a Unicode character. Wide-
String is a string of WideChar char-
acters. Like an ANSI string (also
called a narrow string or, more
often, just ‘string”), Delphi auto-
matically manages the lifetime and
memory of a wide string. The
WideString type stores the string’s
length and automatically places a
##f0 word at the end of the string’s
contents. Unlike the AnsiString
type, though, WideString is not ref-
erence counted. When you assign
one WideString to another
WideString-type variable, Delphi
must copy the entire string. (The
lack of reference counting is to

ensure compatibility with Win-
dows. Kylix does not suffer from
this requirement, so WideStrings in
Kylix are reference counted.)

Windows NT and Windows 2000
have ANSI (narrow) and Unicode
(wide) versions of their standard
controls: edit boxes, list views and
so on. Most Windows API functions
also come in ANSI and wide variet-
ies. Windows 9x does not support
Unicode or the wide API calls. You
can try to run the application, but
Windows informs you that it does
not support the function call.

If you look at Delphi’s Source\
RtI\Win\Windows.pas file, you can
see declarations for the different
functions, such as CreateFileA and
CreateFileW. The plain name, Cre-
ateFile,isthesameas CreateFileA.
The A version of the function takes
a narrow string argument (PChar)
whilst the W version takes a wide
string argument (PWideChar).

If you often need to use the wide
functions and controls, you should
write your own wrapper functions
(similar to those in the SysUtils

type
TWideLabel = class(TLabel)
private
fWideCaption: WideString;

unit) and controls. For example,
suppose you want to define a
Unicode label component. Listing
1 shows a simple declaration of the
TWideLabel class. It inherits from
TLabel, but it adds the WideCaption
property and overrides DoDrawText
to draw the wide string caption.
Listing 2 shows the implementa-
tion of the DoDrawText method.
Notice how it calls the DrawTextW
API to display the wide string. As
you can see, implementing a static
wide control is not difficult.

Implementing a wide window
control is problematic, though.
The VCL makes many calls to the
Windows API, always using the
ANSI versions of the API functions,
which you would need to replace
with the wide versions of the same
functions. The TWinControl base
class is closely tied to the ANSI
controls and functions, and it is dif-
ficult to change it to use wide con-
trols. It is probably simplest to
write entirely new controls that
don’t try to inherit any of the
narrow functions from TWinCon-
trol, such as CreateParams.

The Problem With Properties
A naive implementation of the

procedure SetWideCaption(const Value: WideString);

procedure ReadCaption(Reader: TReader);

procedure WriteCaption(Writer: TWriter);

protected

procedure DoDrawText(var Rect: TRect; Flags: Longint); override;
procedure DefineProperties(Filer: TFiler); override;

published

property Caption: WideString read fWideCaption write SetWideCaption

stored False;
end;

0 Below: Listing 2,
Drawing the wide caption.

// TLabel.DoDrawText but changed to use DrawTextW insted of DrawText.
procedure TWideLabel.DoDrawText(var Rect: TRect; Flags: Integer);

var Text: WideString;
begin
Text := Caption;

if (Flags and DT_CALCRECT<>0) and ((Text='') or ShowAccelChar
and (Text[1] = '&') and (Text[2] = #0)) then

Text := Text + ' ';
if not ShowAccelChar then
Flags := Flags or DT_NOPREFIX;

Flags := DrawTextBiDiModeFlags(Flags);

Canvas.Font := Font;
if not Enabled then begin
OffsetRect(Rect, 1, 1);

Canvas.Font.Color := c1BtnHighlight;

DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text), Rect, Flags);

OffsetRect(Rect, -1, -1);
Canvas.Font.Color := clBtnShadow;

DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text), Rect, Flags);

end else

DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text), Rect, Flags);

end;

The Delphi Magazine

TWideLabel component simply
0 Above: Listing 1,
The TWideLabel class.
Issue 62

changes the Caption property to
type WideString. With that simple
change, the code compiles without
error. But if you try to use the con-
trol at design-time, you notice that
you cannot enter a wide string
value in the Object Inspector. Even
if you try to trick the IDE by editing
the form as text, and entering a
wide string as text, the Object
Inspector displays only a series of
question marks because it con-
verts all the wide characters to
ANSI characters. Even worse, when
you save the .DFM, Delphi stores
the wide string as an ANSI string. In
other words, at design-time, a
WideString property acts just like
an AnsiString property.

The problem is that Delphi’s IDE
must run on all versions of Win-
dows from 95 onward. That means
the IDE cannot use any wide func-
tions or controls. The Object
Inspector, therefore, is restricted
to using ANSI strings, even if a
property is of type WideString.
Because the user can’t enter a wide
string, the code that reads and
writes .DFM files does not store
wide strings either.

Saving Wide Strings

The first step to solving these
problems is to convince Delphi to
store the wide string as a wide
string. Ironically, Delphi’s stream-
ing mechanism has the native abil-
ity to store and load wide strings,
but it doesn’t take advantage of
that capability. Instead, you must
modify your component to store
your property value explicitly, by
overriding DefineProperties. In
this method, you must call Define-
Property to define a pseudo-prop-
erty. You must also supply a
method to read the property value

0 Listing 3

and another method to write the
value. Inside the .DFM file, a
pseudo-property looks and acts
just like a normal property. The
only difference is that Delphi calls
your methods instead of using the
default methods (which map wide
strings to ANSI strings).

Your custom reader and writer
methods have complete control
over the property’s format by call-
ing the methods of TReader and
TWriter, soyou can easily store and
retrieve a wide string, as shown in
Listing 3. (It is interesting that
TReader and TWriter support wide
strings, but Delphi’s streaming
system does not use these meth-
ods, storing wide strings as narrow
strings. Perhaps Borland chose to
store wide strings as narrow
strings because they knew the
Object Inspector’s limitations.)

A bigger problem is the Object
Inspector. The Object Inspector
uses narrow strings, so you cannot
directly edit a wide string in the
Object Inspector window. You can,
however, use a dialog box to edit
the wide string. To do this, you
need to write a property editor.

Property Editor Refresher
A property editor is a class that
inherits from TPropertyEditor. You
register a property editor class for
certain property types, property
names and components. The
Object Inspector checks the type
and name of each property it
must display and chooses an
appropriate property editor class;
then it creates one instance of the
class for each property. When you
select a different component, the
Object Inspector frees all the prop-
erty editor objects and creates new
ones for the new component.

A property editor has a small
number of methods for working

// Delphi stores a WideString by converting it to a narrow string,
// which discards information. Store the actual WideString data.
procedure TWidelLabel.DefineProperties(Filer: TFiler);

begin
inherited;

Filer.DefineProperty('WideCaption', ReadCaption, WriteCaption, Caption <> '');

end;

procedure TWidelabel.ReadCaption(Reader: TReader);

begin

end

fWideCaption := Reader.ReadWideString;

procedure TWidelLabel.WriteCaption(Writer: TWriter);

begin
Writer.WriteWideString(Caption);
end;

10

The Delphi Magazine

with the Object Inspector. To write
a new property editor, you decide
which methods you need to over-
ride to provide the custom behav-
ior for your property editor. Delphi
comes with many property edi-
tors, such as TIntegerProperty,
TFontProperty and so on, all of
which derive from TPropertyEditor
or one of its subclasses. Usually,
you can choose one of these prop-
erty editor classes as the base
class for your custom property
editor. See Source\Toolsapi\
Dsgnintf.pas to find out more
about the many property editor
classes that you can use.

By default, Delphi uses TString-
Property for all string-type proper-
ties, including WideString-type
properties. TStringProperty con-
verts a WideString property value
to a narrow string. If you look
under the hood, the TStringProp-
erty editor calls the GetStrProp and
SetStrProp routines in the TypInfo
unit. That’s where the conversion
actually takes place. GetStrProp
can read any string-valued prop-
erty, and it converts the property
value to an AnsiString. This can be
convenient if the property’s type is
a ShortString, but it is not helpful
when it converts aWideStringtoan
AnsiString. Clearly, you need a
GetWideStrProp function. Too bad
Delphi doesn’t have one.

WideString Properties

In order to get and set the value of
a WideString-type property, you
need to understand how Delphi
stores information about pub-
lished properties of all types. Now
the code starts to get ugly.

Every published declaration has
some information stored for use at
runtime. This information is called
Runtime Type Information (RTTI).
For a published property, Delphi
stores the property name, type,
reader, writer, default value, index
value, and value of the stored
directive. The reader and writer
can be methods, field names, or
parts of aggregate fields (arrays
and records). You can use static
and virtual methods, but not class
or dynamic methods. The reader
must be a function that returns the
same type as the property type,

Issue 62

and the writer must be a procedure
that takes an argument of the same
type as the property type.

Delphi stores a 32-bit value for
the reader and another for the
writer. The value can be a pointer
or an integer, depending on how
the property value is stored:

Field: The first byte of the
pointer value is $FF, and the rest of
the value is a byte offset of the field
that stores the WideString. The
compiler lets you specify the name
of a scalar field, a constant index
into an array-type field, a member
of a record-type field, or any com-
bination. The field reference must
be a constant, though, so you
cannot use a variable to index an
array-type field.

Virtual method: The first byte is
$FE, and the low-order word is a
byte offset in the class’s virtual
method table (VMT) that contains
the method pointer.

Static method: If the first byte is
not $FE or $FF, the entire value
points to the start of the reader or
writer method. The Windows
memory architecture ensures
static methods can never have a
pointer value starting with $FE or
$FF: these addresses are reserved
for the Windows kernel.

0 Listing 5: Getting a
WideString-type property.

const
NoIndex = Low(Integer);

type
TWideStrProc = procedure(Instance: TObject;

const Value: WideString) register;

TWideStrIndexProc = procedure(Instance: TObject; Index:

A reader method returns a Wide-
String value, and the writer
method takes a WideString argu-
ment. If the property is indexed,
the index value is passed as the
sole argument to a reader method
or as the first argument to a writer
method. An indexed property
stores an integer as the index
value. Delphi stores the smallest
negative integer for a property that
is not indexed.

For example, the declaration of
the Info property in Listing 4 might
return areader of $FF000004 if FInfo
is the object’s first field (the first
four bytes of the object point to its
VMT). Suppose also that SetInfois
an ordinary (non-virtual) method.
The writer value would be a code
pointer to the method’s entry
point, such as $402004C. Because
the property is not indexed, the
index value is -2,147,483,648. The
Stuff property is indexed, with an
index value of 2.

To get the RTTI for a published
property, call TypInfo.GetPropInfo
(for example). With the property
RTTI and the component instance
you can interpret the reader infor-
mation, look up the field or method
information, and obtain the prop-
erty value. This is shown in Get-
WideStrProp, which gets the prop-
erty’s value as a WideString, as
shown in Listing 5. The helper

function GetPropGetter examines
the property information to get a
field or method address, so hiding
from GetWideStrProp the details of
virtual or static methods. Listing 6
shows the corresponding func-
tion, SetWideStrProp and its helper,
GetPropSetter.

Note that the read and write
functions for a property are meth-
ods, so the first argument must be
the object reference (that is, Self).
Delphi implicitly passes the object
reference as the first argument to
any method call. The GetWideStr-
Prop and SetWideStrProp functions
must emulate this behavior by
explicitly passing the object refer-
ence. Thus, the reader function is
actually called with one or two
arguments: the object reference
and the optional index value. The
write method is called with two or
three arguments: the object refer-
ence, the optional index value, and
the new wide string value.

0 Listing 4

procedure SetInfo(
const Info: WideString);
procedure SetStuff(Index: Integer;
const Stuff: WideString);
function GetStuff(Index: Integer):
WideString;

property Info: WideString
read fInfo write SetlInfo;
property Stuff: WideString index 2
read GetStuff write SetStuff;

// low-order 2 bytes are used for the offset into the
// VMT. The first field in Instance is a pointer to a
// VMT, which is a 1ist of pointers to functions. Use
// offset into the VMT to get actual method pointer.
Ptr := PPChar(Instance)* +
LongRec(PropInfo.GetProc).Lo;

Integer; const Value: WideString) register; Ptr := PPointer(Ptr)”;

TWideStrFunc = function(Instance: TObject):

WideString register;

end else begin
// GetProc is a static method pointer.

TWideStrIndexFunc = function(Instance: TObject; Ptr := PropInfo.GetProc;

Index: Integer): WideString register;

PPChar = ~PChar;
PPointer = ~Pointer;

// To help access the property value, GetPropValue gets a e?d;
// pointer to the field or method. PtrType says what kind of end;

// pointer it is. An exception is raised for any error.

end;

if Ptr = nil then
// No GetProc at all!
raise EPropWriteOnly.Create(sWriteOnlyProperty);

procedure GetPropGetter(Instance: TObject; PropInfo:

PPropInfo; var PtrType: TPtrType; var Ptr: Pointer);

var Mask: LongWord;
begin

12

// High word of GetProc determines how to interpret it.
Mask := LongWord(PropInfo.GetProc) and $FF000000;
if Mask = $FF000000 then begin
// GetProc is a field offset in Instance. The low-order
// 3 bytes specify the byte offset from the start of
// Instance. Treat Instance as a pointer to add the
// offset, then dereference that pointer to perform the
// simple WideString assignment.
PtrType := ptData;
Ptr := PChar(Instance) + LongInt(PropInfo.GetProc)
and $FFFFFF;
end else begin
// Otherwise, GetProc is a reference to a method,
// either virtual or static.
PtrType := ptCode;
if Mask = $FE000000 then begin
// GetProc is a virtual function offset. Only the

The Delphi Magazine

// Delphi always converts a wide string to an ANSI string
// when setting a property value. Call GetWideStrProp and
// SetWideStrProp to access the property value as a real
// WideString.
function GetWideStrProp(Instance: TObject; PropInfo:
PPropInfo): WideString;
var
PtrType: TPtrType;
Ptr: Pointer;
begin
GetPropGetter(Instance, PropInfo, PtrType, Ptr);
if PtrType = ptData then
Result := PWideString(Ptr)»
else if PropInfo.Index <> NoIndex then
// Indexed property, so call GetProc with index value.
Result :=
TWideStrIndexFunc(Ptr)(Instance, PropInfo.Index)
else
// Not an indexed property, so just call the GetProc.
Result := TWideStrFunc(Ptr)(Instance);
end;

Issue 62

procedure GetPropSetter(Instance: TObject; PropInfo:
PPropInfo; var PtrType: TPtrType; var Ptr: Pointer);
var Mask: LongWord;
begin
// High word of SetProc determines how to interpret it.
Mask := LongWord(PropInfo.SetProc) and $FF000000;
if Mask = $FF000000 then begin
// SetProc is a field offset in Instance. Low-order 3
// bytes specify byte offset from start of Instance.
// Treat Instance as a pointer to add the offset, then
// dereference pointer to perform WideString assignment.
PtrType := ptData;
Ptr := PChar(Instance) + LongInt(PropInfo.SetProc)
and $FFFFFF;
end else begin
// SetProc is reference to virtual or static method
PtrType := ptCode;
if Mask = $FE000000 then begin
// SetProc is a virtual function offset. Only the
// Tow-order 2 bytes are used for offset into VMT.
// First field in Instance is pointer to a VMT, which
// is a list of pointers to functions. Use offset into
// the VMT to get the actual method pointer.
Ptr := PPChar(Instance)* +
LongRec(PropInfo.SetProc).Lo;

Ptr := PPointer(Ptr)*;

end else begin
// SetProc is a static method pointer.
Ptr := PropInfo.SetProc;
if Ptr = nil then // No SetProc at all!

raise EPropReadOnly.Create(sReadOnlyProperty);
end;
end;
end;

procedure SetWideStrProp(Instance: TObject; PropInfo:
PPropInfo; const Value: WideString);
var
PtrType: TPtrType;
Ptr: Pointer;
begin
GetPropSetter(Instance, PropInfo, PtrType, Ptr);
if PtrType = ptData then
PWideString(Ptr)» := Value
else if PropInfo.Index <> NoIndex then
// Indexed property, so call SetProc with index value.
1TNideStrIndexPr‘oc(Ptr)(Instance, PropInfo.Index, Value)
else
// Not an indexed property, so just call the SetProc.
TWideStrProc(Ptr)(Instance, Value);
end;

0 Listing 6: Changing a
WideString-type property.

Wide String Property Editor

Now that you can read and write
WideString property values, it’s
time to finish the wide string prop-
erty editor. The class TProperty-
Editor has some convenience
methods to set a property for all
selected components. For exam-
ple, SetStrValue calls SetStrProp
for all selected components. As |
mentioned earlier, SetStrProp
takes an AnsiString argument,
which isn’t what you want for a
WideString-type property. So, you
must write your own SetWideStr-
Value, which calls SetWideStrProp
(see the previous section). Other
related methods include GetWide-
Strvalue and GetWideStrValueAt.
Listing 7 shows the wide string
methods of TWideStringProperty.

The Object Inspector calls
GetValue to obtain an ANSI string to
display, and it calls Setvalue when
the user modifies that ANSI string.
Because the Object Inspector
cannot handle wide strings, there
is no need to override these
methods.

A new feature in Delphi 5 is
owner-drawn property editors.
TWideStringProperty overrides the
PropDrawValue method to display
the wide string property value. To
set the value, though, you need to
pop up a dialog box. There is no
convenient way to force the Object
Inspector to accept awide string as
input. Thus, TWideStringProperty
sets the property attributes toread
only and to have a dialog box. It

14

function TWideStringProperty.GetWideStrValue: WideString;

begin
Result := GetWideStrValueAt(0);
end;

function TWideStringProperty.GetWideStrValueAt(Index: Integer): WideString;

begin

end;

Result := GetWideStrProp(GetComponent(Index), GetPropInfo);

procedure TWideStringProperty.SetWideStrValue(const Value: WideString);

var
I: Integer;

begin
for I := 0 to PropCount-1 do

SetWideStrProp(GetComponent(I), GetPropInfo, Value);

Modified;
end;

0 Listing 7: WideString-access methods for TWideStringProperty.

overrides the Edit method to show
the dialog box and let the user edit
the wide string.

The dialog box is like a wide ver-
sion of Delphi’s input query dialog
box. To encourage code reuse, you
can write a general-purpose func-
tion, InputQueryW, which is similar
to Delphi’s InputQuery function,
but it lets the user enter a wide
string. For the sake of simplicity,
you can use ANSI strings for the
caption and prompt. The Input-
QueryW function creates a TInput-
QueryWForm (Listing 8). The form is
an ordinary Delphi form, with a
label for the prompt, and two but-
tons: 0K and Cancel. The only trick
is that the form’s OnCreate handler
creates a wide edit control using
the Windows API, as shown in List-
ing 9. The form also has some
access methods to make it easier
to get and set the value of the wide
edit control. Listing 10 shows these
methods.

Packaging The Parts

Put all the pieces together by putt-
ing the wide label component in a

The Delphi Magazine

function InputQueryW(const Caption,
Prompt: string; var Value:
WideString): Boolean;
var
Form: TInputQueryWForm;
begin
Form := TInputQueryWForm.Create(
Application);
try
Form.Caption := Caption;
Form.Labell.Caption := Prompt;
Form.Text := Value;
// Show form modally so user
// can edit the text.
Result :=
Form.ShowModal = mrOK;
if Result then
Value := Form.Text;
finally
Form.Free;
end;
end;

0 Listing 8: InputQueryW.

runtime package (Wide50.bpl) and
the design-time code in a design-
time package (WideCtls.bpl): the
code is on the disk. Install the
design-time package in Delphi’s
IDE to register the TWidelLabel con-
trol and the WideString property
editor. Put the runtime package
anywhere in your PATH, so Win-
dows can find it. You can now use
wide strings in components, and
have full access to wide strings at
design-time and at runtime.

Issue 62

procedure TInputQueryWForm.FormCreate(Sender: TObject);

const Margin = 8;
EditWidth = 300;
begin
// Create the wide edit control.

fEditWnd := CreateWindowExW(Ws_Ex_ClientEdge, 'EDIT', '',
Ws_Child or Ws_Visible or Ws_Border or Ws_TabStop or Es_AutoHScroll,
Margin, Labell.BoundsRect.Bottom+Margin, EditWidth, Labell.Height + Margin,

Handle, 0, hInstance, nil);

// The default font uses the OEM character set, not Unicode.
// The form uses Arial, which supports Unicode on NT.

e

function TInputQueryWForm.GetText:
WideString;
begin
// Get text, return it to caller.
SetLength(Result,
GetWindowTextLengthW(EditWnd));
GetWindowTextW(EditWnd,
PWideChar(Result),
Length(Result)+1);
end;
procedure TInputQueryWForm.SetText(
const Value: WideString);
begin
SetWindowTextW(EditWnd,
PWideChar(Value));
end;

0 Listing 10: Wide text access.

Delphi has one last trick up its
sleeve, though. You must disable
the Text DFM feature: from the
form editor’s context menu, make
sure Text DFM is not checked.
Binary DFMs store wide strings

October 2000

SendMessageW(EditWnd, Wm_SetFont, WParam(Font.Handle), 0);
nd;

0 Listing 9: Creating the control.

correctly, but a text DFM does not
distinguish between a wide string
and an ANSI string. If a string con-
tains at least one wide character,
Delphi treats it as a wide string. If
the string contains all ANSI charac-
ters, Delphi thinks the string is an
ANSI string, regardless of the prop-
erty’s type. This is a bug. A wide
string that contains all ANSI char-
acters should still be treated as a
wide string. You won’t notice the
error when you save the DFM, but
when you load it, you will get an
‘Invalid property value’ error
because Delphi reads an ANSI
string from the DFM, but the form
expects a wide string.

The Delphi Magazine

Supporting wide strings as pub-
lished properties is harder than it
should be, but you need to do the
dirty work only once (or, in this
case, let me do the dirty work for
you). Once you register the
TWideStringProperty editor, it
automatically works for all proper-
ties of type WideString. You can
also call the InputQueryW function
anytime you want to get a wide
string from the user. The only work
you need to repeat is loading and
storing the wide string value in
your component, but that’s just a
couple of one-line methods.
Perhaps future versions of Delphi
will provide better support for
wide strings at design-time (but
don’t hold your breath).

Ray Lischner is the author of
Delphi In A Nutshell and other
books and articles. He speaks
about Delphi at conferences and
teaches Computer Science at
Oregon State University. Email
Ray at lisch@tempest-sw.com

15

	Unicode a narrow string argument)
 don’t try to inherit any of the
	The Problem With Properties
	Saving convenient if the property’s type is
	Property Editor Refresher
	WideString Properties
	Wide String Property Editor
	Packaging The Parts

